Khoảng Cách Từ Điểm Đến Mặt Phẳng Oxyz

     
Trong hình học không gian Oxyz, ta có nhiều cách để tính được khoảng cách từ điểm đến mặt phẳng. Tuy nhiên, nếu đề cho biết tọa độ 1 điểm và phương trình 1 mặt phẳng thì ta nên dùng công thức dưới đây sẽ cho kết quả nhanh và chính xác.

Trong hình học không gian Oxyz, ta có nhiều cách để tính được khoảng cách từ điểm đến mặt phẳng. Tuy nhiên, nếu đề cho biết tọa độ 1 điểm và phương trình 1 mặt phẳng thì ta nên dùng công thức dưới đây sẽ cho kết quả nhanh và chính xác.

Bạn đang xem: Khoảng cách từ điểm đến mặt phẳng oxyz

*

Cơ sở lý thuyết

Trong không gian Oxyz có điểm P(a; b; c) không thuộc mặt phẳng (α), biết rằng mặt phẳng này có phương trình (α): Ax + By + Cz + D = 0. Để tính khoảng cách từ điểm P(a; b; c) tới mặt phẳng (α) ta sử dụng công thức:

d(P, (α)) = $\frac{{\left| {a.A + b.B + c.C + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$

Bài tập có lời giải

Bài tập 1.Trong không gian có mặt phẳng (α): x – 2y + 3z – 4 = 0. Hãy tìm khoảng cách từ P(1; 1; 1) tới mặt phẳng (α)?


Hướng dẫn giải

Áp dụng công thức tính khoảng cách ở trên: d(P, (α)) = $\frac{{\left| {1.1 + 1.\left( { – 2} \right) + 1.\left( 3 \right) – 4} \right|}}{{\sqrt {{1^2} + {{\left( { – 2} \right)}^2} + {3^2}} }} = \frac{{\sqrt {14} }}{7}$

Kết luận: d(P, (α)) = $\frac{{\sqrt {14} }}{7}$

Bài tập 2. Cho mặt phẳng (α): x + y + z – 9 = 0. Một điểm P nằm trên trục tọa độ Oz thuộc hệ trục Oxyz, cách (α) là 5. Hãy tìm tọa độ của M?

Hướng dẫn giải


Vì P thuộc Oz nên nó có tọa độ là P( 0; 0; z).

Theo công thức khoảng cách ở trên: d(P, (α)) = 5

$5 = \frac{{\left| {1.0 + 1.0 + 1.z – 9} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} \Leftrightarrow z = 5\sqrt 3 + 9$

Kế luận: P( 0; 0; $5\sqrt 3 + 9$)

Bài tập 3. Hãy tính khoảng cách từ gốc tọa độ O của hệ trục Oxyz tới mặt phẳng (Q): 2x – 3y – 5z + 2 = 0

Hướng dẫn giải


Gốc tọa độ của hệ trục Oxyz có tọa độ O(0; 0; 0)

Áp dụng công thức tính khoảng cách ở trên: d(O, (Q)) = $\frac{{\left| {2.0 + \left( { – 3} \right).0 + \left( { – 5} \right).0 + 2} \right|}}{{\sqrt {{2^2} + {{\left( { – 3} \right)}^2} + {{\left( { – 5} \right)}^2}} }} = \frac{{\sqrt {38} }}{{19}}$

Bài tập 4. Một mặt phẳng (α): – x + 2y + 3z – 4 = 0. Biết khoảng cách từ mp (α) tới P thuộc trục Ox là 2. Hãy xác định tọa độ điểm P.

Xem thêm: Soạn Anh 8 Unit 1 Getting Started Unit 1: Leisure Ativities, Getting Started

Hướng dẫn giải

Vì P thuộc Ox nên nó có tọa độ P(x; 0; 0)

Theo đề bài: d(P, (α)) = 2

Áp dụng công thức tính khoảng cách: 2 = $\frac{{\left| {\left( { – 1} \right).x + 2.0 + 3.0 – 4} \right|}}{{\sqrt {{{\left( { – 1} \right)}^2} + {2^2} + {3^2}} }} \Leftrightarrow x = 2\sqrt {14} – 4$

Vậy P( $2\sqrt {14} – 4$; 0; 0)

Bài viết khoảng cách từ 1 điểm đến mặt phẳng tạm dừng ở đây. Với mong muốn mỗi bài viết sẽ giúp bạn hiểu và vận dụng thành thạo công thức nên nếu còn thắc mắc hay góp ý hãy để lại và vincitysdaimo.com sẽ giúp bạn giải quyết.


Điều hướng bài viết
← Previous Bài viết
Next Bài viết →

Leave a Comment Cancel Reply

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *


Type here..

Xem thêm: Kết Quả Thi Olympic Tháng 4 Năm 2019, Bảng Điểm Và Thông Tin Chi Tiết Kì Thi Olympic 30


Name*

Email*

Website


Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.


Search for:

Bài viết mới

Phản hồi gần đây

Chuyên mục

Bài viết mới


ID: vincitysdaimo.com